SUGI 27: Use of the ROC Curve and the Bootstrap in Comparing Weighted Logistic Regression Models
نویسندگان
چکیده
In analyzing data from a survey, researchers often need to compare the effectiveness of several logistic regression models. The receiver operating characteristic curve offers one way to measure effectiveness of prediction, by calculating the area under the curve (AUC). We present a SAS macro for calculating AUC that takes the survey weights into account. For comparing logistic regression models, one needs to assess differences in AUC against the variation in the data. We demonstrate the use of the SAS SURVEYSELECT procedure to create a set of 1,000 bootstrap samples and give some background on the calculation of separate weights for each bootstrap sample. For each sample, the AUC macro is then used to calculate the AUC for each model. We show how to use the bootstrap results to assess the significance of the difference in predictive ability of the two models.
منابع مشابه
Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis
Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods : In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were ...
متن کاملمقایسه مدلهای رگرسیون لجستیک با تحلیل جداسازی در پیشبینی دیابت نوع 2
Background and Objectives: Diabetes is a chronic and common metabolic disease which has no curative treatment. Logistic regression (LR) is a statistical model for the analysis and prediction in multivariate statistical techniques. Discriminant analysis is a method for separating observations in terms of dependent variable levels which can allocate any new observation after making discriminating...
متن کاملComparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models
Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...
متن کاملپیشبینی بقای بیماران مبتلا به سرطان پستان با استفاده از دو مدل رگرسیون لجستیک و شبکه عصبی مصنوعی
Background and Objectives : recent years, considerable attention has been paid to statistical models for classification of medical data according to various diseases and their outcomes. Artificial neural networks have been successfully used for pattern recognition and prediction since they are not based on prior assumptions in clinical studies. This study compared two statistical models, arti...
متن کاملGroundwater Potential Mapping Using the Integration of the Weight of Evidence and Logistic Regression Models (A Case Study: Nahavand)
Today, supplying water to meet the sustainable development goals is one of the most important concerns and challenges in most countries. Therefore, identification of the areas with groundwater potential is an important tool for conservation, management and exploitation of water resources. The purpose of this research was to prepare the potential groundwater map in Nahavand, Hamedan Province, us...
متن کامل